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WAVE F L O W S  IN A T H I N  L A Y E R  OF A V I S C O U S  L I Q U I D .  

I N F L U E N C E  O F  A C O N S T A N T  E L E C T R I C  F I E L D  

V. E. Z a k h v a t a e v  UDC 532.516 

The influence of a constant transverse electric field on the dynamics of longwave, weakly 
nonlinear flow of a viscous dielectric liquid film down a vertical wall is studied. An amplitude 
integrodifferential equation in partial derivatives of the Kuramoto-Sivashinskii equation type, 
which describes the behavior of the free surface of the layer, is derived using the method of 
multiscale stretching. In the case considered, the potential energy of the electric field is a source 
of longwave perturbations, but, on the whole, secondary regimes are apparently nonlinearly 
steady. Probably, the electric polarization effects studied can be used as a factor that governs 
the dynamics of film flow. 

I n t r o d u c t i o n .  Investigation of various flows of thin layers of a viscous liquid is of interest both in 
theory (because the dynamics in these rather simple and accessible physical systems is extremely varied and 
involves many important nonlinear phenomena [1-3]) and in practice (for example, for activation of transfer 
processes in heat- and mass-exchange devices [4, 5]). 

The behavior of a thin liquid layer (a film) is frequently studied by deriving amplitude equations in 
a longwave approximation. A typical example is the Kuramoto-Sivashinskii equation (KS), used to describe 
weakly nonlinear processes in film layers within the limit of asymptotically large effective surface tension 
[6-10]. The main physical factors in this case are the gravitational force, viscous friction, and surface tension; 
predominance of effects due to the gravitational force over viscosity effects facilitates destabilization of 
longwave perturbations, and surface tension results in attenuation of small shortwave fluctuations in the 
linear stage. The mutual effect of these two opposite tendencies leads to the complex and varied dynamics 
expressed by the KS equation [6-15]. 

In the present paper, we examine how a normal constant electric field can affect the behavior of a film. 
1. F o r m u l a t i o n  of  t h e  P r o b l e m .  Let z* and z* be Cartesian coordinates (we restrict ourselves to 

the two-dimensional case) and the z* axis be directed opposite to the direction of the gravitational force. We 
study the following physical system (Fig. 1). The surfaces x* = 0 and z* -- a* = const > 0 define the planes 
of electrodes between which in the region fl = {0 < x* < h*(z*, t*), - o o  < z* < oo} flow of a thin film layer 
of a viscous incompressible dielectric liquid occurs. In the region f~g - {h*(z*, t*) < x* < b*, - o o  < z* < oo} 
(b* = const and b* < a*), there is a dielectric gas present, and in the region n s = {b* < z* < a*, - oo  < 
z* < oo}, there is a solid dielectric present. We assume that the primary flow is laminar, the unperturbed 
free boundary of the film layer is plane and is defined by the equation z* = h~, the electric field between the 
electrodes is constant and homogeneous, and the electric intensity of the thin liquid layer f~ is equal to e~. It 
is assumed that h~/a* << 1, (b* - h~)/a* << 1, and (a* - b*)/a* .., O(1). 

The following (constant) parameters enter the problem: p, #, and "/are the density, dynamic viscosity. 
and dielectric constant of the liquid film layer ~; 7 g and "t s are the dielectric permeability of the phases in the 
regions ftg and ~s; a is the surface-tension coefficient at the interface; and f* is the acceleration of gravity. 
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Fig. 1 

As scale factors for spatial variables, velocity, time, pressure, and electric intensity, we use, respectively, 
h~, w* = pf*h~2/21z, which is the velocity on the free boundary of the film, h~/w*,  pw .2, and e~. Next we set 
( x*, y*, a *, b*, h * ) / h~ = ( x,  y, a, b, h ), t* w* / h~ = t and examine the dimensionless problem. 

Let p be the pressure, u and w be the z and z components of the film velocity vector, and e and g, eg 
and gg, and e s and gS be the x and z components of the electric-intensity vector in the regions fl, fig, and 
fls, respectively. 

The initial mathemat ica l  model that  describes the processes in the physical system studied has the 
following form [16, 17]. In the region ~, the Navier-Stokes, continuity, and Maxwell equations are satisfied (a 
magnetic field is absent): 

In the region f g ,  we have 

and in the region f* ,  we have 

ut + uuz  + wuz = - P z  + ( l /Re)(uzz  + Uzz); 

wt + uwz  + wwz  = - p z  + ( l /Re)(wxz + wzz) - 2/Re; 

u z  + w ,  = 0; 

e z - g ~ = 0 ,  e ~ + g z = 0 .  

(i.i) 

(1.2) 

(1.3) 

(1.4) 

- = 0, e i  + gg = o (1.5)  

$ $ $ "4- $ %--gz =0,  e z 9z =0.  (1.6) 

The conditions on the electrodes are of the form 

u = O ,  w = O , g = O  f o r z = O  and g S = O  f o r z = a .  (1.7) 

The conditions on the interface r [at z = h(z,  t)] express (the notation [(.)1 - ( . ) -  (.)g is used): 
- -  continuity of the electric-induction vector component  normal to r 

[X(e-  h,g)] = 0; (1.8) 

- -  continuity of the electric-intensity vector component  tangent to F 

[eh~ + g] = 0; (1.9) 

- -  balance of normal stresses 

- R e ( p  - p~)(1 + h~) + [Xe2] + h2[xg 2] - 2h~[xeg] - (1/2)(1 + h2~)[X(e2 + g2)] 

q- 2(ttz -- hz(Wz -[- Uz) -[- h2wz) --. Wehzzl(1 Jr- h2z)l/2; (1.10) 

- -  balance of tangential stresses 

h~[xe 2] + (i - h2~)[xeg]- h~[xg z] + 2h~u~ + (1 - h~)(w~ + u~) - 2 h ~ w ~  = O; (I.II) 
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- -  the kinematic relation 

ht + wh: = u. 

For = = b, the following conditions are satisfied: 

)(.ge g = x S e S ;  

gg = gS. 

(1.12) 

(1.13) 

(1.14) 
Here Re = ph~w*/l~, We = a/(l~w*), X = 7h~e~i/(4~rlJW*), X g = 7gh~e~2/(4rl~W*), X s = 7Sh~e~2/(47rltw*), 
and i~ is the pressure of the gas phase in contact with the film layer (a given quanti ty).  

The principal state is defined by the following solution of system (1.1)-(1.14): 

u 0 = 0 ,  t o 0 = x  2 - 2 x ,  p 0 = c o n s t ,  h = l ,  e 0 = 6 ,  g 0 = 0 ,  
(1.15) 

eg = (x lxg ) s ,  gg = o, 4 = (x lx ' )S ,  g~ = 0, where S + 1. 

2. D e r i v a t i o n  of  t h e  A m p l i t u d e  E q u a t i o n .  In deriving the ampli tude equation we follow the 
approaches of [7, 8], which implement  the method of multiscale decomposition. If the influence of the electric 
field is ignored, the examined film flow will be unsteady within the framework of linear analysis. In this case, 
according to the dispersion relation for perturbations of the form exp(~t + ikz),  for We >> 1 and Re -~ O(1) 
in the instability region, we have [8] 

k .-. We -1/2, Real()~) ~ We - I ,  Im(~)  -.. We -1/2. (2.1) 

Thus, one might expect that ,  inside the film under rather strong surface tension, the characteristic 
longitudinal spatial scale of weakly nonlinear secondary wave regimes will be much larger than the scale in 
the transverse direction when electric effects do not significantly affect the situation described above. 

Linearizing system (1.1)-(1.14) on the solution (1.15) and expanding the quant i ty  ,~ in a series in the 
asymptotically small wave number  k, we find that  estimates (2.1) remain valid if the conditions X = O(1), 
X g = O(1), and X s = O(We x/2) are satisfied. 

Next, we consider the behavior of secondary processes with a characteristic spatial scale of order O(e -1 ) 
(e << 1 is a small parameter) .  We assume in this case that  We = O(e-2).  

Taking into account (2.1), we set 

We = O(e-2),  Re = O(1), X = 0(1),  X g = O(1), X s = O(e -1) (X g # Xs); (2.2) 

x = =  (0<~=<. i ) ,  R = ( b - ~ ) / C b - 1 )  ( l < ~ < . b ) ,  
(2.3) 

0 0 e2 0 
y = (~ - ~)/(~ - b) (b < �9 .< ~), z = ~ ,  05 - '  e ~ + aT; 

u =  ~ e " U . ( X , Z , r , T ) ,  w = w o ( X , e ) +  Y ]  e " W . ( X , Z , r , T ) ,  
n = l  

p = po(e) + Y]~ e " P . ( X , Z , r , T ) ,  
n = l  

e = ,5 + ~_, e " E . ( X , Z , r , T ) ,  
n = l  

eg = (x /xg)  i~ + E r  
n = l  

e s = (X/X~),5+ y~ s " E ~ ( Y , Z , r , T ) ,  
n-~-.1 

n = l  

h = 1 + Y~. ~ " H . ( Z , T , T ) ,  
n = l  

g = ~ e " G . ( X ,  Z, r, T), 
n = l  

g g = y~ e " G [ ( R , Z , r , T ) ,  
n = l  

gS = Y~ r Z, r, T).  

In addition, we denote We = We e2~ ~s = Xse, and o = ea. 
Substituting (2.2)-(2.4) into (1.I)-(1.14), in the zero and first orders we obtain 

- P 1 x  + ( 1 / R e ) U i x x  = O, ( 1 / R e ) W 1 x x  = 2(X - 1)U1, U1x = O, 

(2.4) 
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G~x = O, E~x - O f o r O < X <  1; 

G [ R = 0 ,  E [ R = 0  f o r 0 < R <  1; 

E~ z + _l G~y = O, __1 E~y + G~z = O f o r 0 < Y <  1," 
c t  

Ux = WI = GI = O f o r X = O ,  G~ = O fo rY=O;  

E, = (x'/x)E[,  a ,  - a~l = o, -Re  P, + x6(E, - E[) + 2U, x = We Hszz, 

x6(G,-G[)+WIx+2HI=O,  U,=0 fo rX=l ,  R = I ;  

E~=O,  G [ - G [ = O  f o r R = 0 ,  Y = I .  

Furthermore, we write the condition necessary for solution of the problem in the second order: 

E~ = ('~s/xg)E ~ for R = 0, Y = 1. (2.11) 

Problem (2.5)-(2.10) has the solution 

U, = O, P, = -(W~/R.e)H, zz + (x6/Re)(E, - El), W, = -2H, X, 
(2.12) 

E , = E , ( Z , r , T ) ,  G , = 0 ,  E ~ = ( x / X g ) E , ( Z , r , T ) ,  G [ = 0 ,  E ~ = 0 ,  G~=0.  

The function El(Z ,  r, T) is found as follows. 
To determine the amplitude equation, it is necessary to examine Eqs. (1.2)-(1.7), (1.9), (1.11), (1.12), 

and (1.14) in the second order: 

Wlr+ 2(X - I)U2 + X(X - 2)WIZ = -PIZ + (I/Re)W2xx for 0 < X < i; (2.13) 

U 2 x + W l z = O  for 0 < X < l ;  (2.14) 

EIz  - G2x = O, E~x = O f o r 0 < X < l ;  (2.15) 

( 1 - b ) E ~ z - G ~ R = 0  , E~R=O f o r 0 < a < l ;  (2.16) 

E~ z + _l G~y = O, __1 E~y + G s a 2 z = 0  f o r 0 < Y < l ,  G~.=0 f o r Y = 0 ;  (2.17) 

U 2 = W 2 = G 2 = 0  f o r X = 0 ;  (2.18) 

6 ( 1 - x / X g ) H l z + G 2 - G ~ = 0  f o r X = l ,  R = I ;  (2.19) 

X(1 - x / x g ) H l z  + x6(G2 - G~) + W2x + 2//2 = 0 for X = 1, R = 1; (2.20) 

Hi,. - HlZ = U2 for X = 1; (2.21) 

G~=G~ f o r R = 0 ,  Y = I .  (2.22) 

From (2.12), (2.14), and (2.18) we obtain 

Us = X 2 H l z .  (2.23) 

Then, from (2.21) it follows that HI = HI(~,T)  and r = Z + 2 r .  From (2.12), (2.15), (2.16), (2.18) and (2.22) 
it follows that 

G2 = EIcX,  G~ = (x/xg)(1 - b)EIcR + G~(Y = 1). (2.24) 

We define the function (I) by the relations E~r = (I)y and G~ = -a(I). Then using the Fourier transform 
OO 

[F(r = f r~exp(-ik~)d~], from (2.17) we find 
- - 0 0  

F(4)) = C(k){exp(akY)  - exp(-~kY)}, 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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and from (2.11), (2.12), (2.19), and (2.24) we have 

El( = (~S/X)(I)y, 6(1 - x/Xg)HI~ + (1 + (x/xg)(b - 1))E,r + (~(I) = 0 for Y = 1. 

Hence, 

E,r = F- '  ( 6Xsk(X - xg)F(H'r ). (2.25) 
\ xxgtanh-~-TXs-~(Xg T xf  b - 1)) 

The quantity W2 is determined from (2.13), (2.18), and (2.20) using (2.12), (2.19), and (2.23): 

W2=Re(Ix 4 2X3 -~W~x(x- -2XH2 ~ -~ - 5  + 4 X )  H'r 2)H,~r162 + I x 6 x ( x _ 2 ) ( I _  X ) E I r  (2.26) 

Examining in the third order the kinematic condition 

H1T + H2r + W1HIr = Ua + U2x H1 f o r X = l  

and expressing the function Ua from the continuity equation Uax + W2r = 0 with allowance for U3(0) = 0 
and (2.25) and (2.26), we find the desired amplitude equation in the form 

1 i 
H , T - 4 H ,  H,r R e H I ; ; +  gWeHlr162162 f J(k) f Hl~(~,T)exp(ik(~-~))d~dk=O, 

- - 0 0  - - 0 0  

t anh(c~k)+Ek '  -~- - 1  , E=--X 1 + ( b - 1 )  . 

Remark .  Formally, it is possible to examine the case where the region fls, like the region fig, is filled 
with a gas phase (the results will be similar) but, in this situation, the question arises of how to realize the 
condition 7 << 7 s, which is key to our analysis, in practice. 

3. Influence o f  an Electric  Field on the Propert ies  o f  Periodic  Regimes .  Weakly nonlinear 
processes in the studied system in the absence of a potential difference between the electrodes are described 
by a KS equation that is similar in form to (2.27), but one should set J _= 0. We examine how the electric 
effects studied can change the dynamics of the film layer. 

With substitution of variables, Eq. (2.27) with periodic boundary conditions [Hi(0, t) = Hi(L, t)] can 
be written as 

r 02H 04H OH i 7 7 0 H  8t + i~2 ~ + ~ + g ~ + ~x J(k) - ~  exp(ik(z - ~)) d~ dk = O, 
- - O O  - - 0 0  

s R e ,  L (3.1) 
H(O,t) H(27r, t), p 2 =  

g we J(k) = ' tanh(ak) + Bk'  A > O, B > O, a > O. 

We compare the periodic solutions described by Eq. (3.1) and the KS equation 

OH v2 02H 04H OH 
Ot + -O~z2 +"~'4x4 + g ' ~ x = O "  (3.2) 

OO 

Expanding the solution in the Fourier series H = E A,,(t)exp(inx), A_,, = A~ r (the superscript 

c.c. means complex conjugation), we find that the evolution of the amplitudes of the Fourier components is 
described by the following system of ordinary differential equations: 

dt = 3"(n)A,, - in A,r162 + ~ ~ A,A, -r  , n = 1,2, . . . .  (3.3) 
r ~ . l  

Here "y(k) =/~2k2 - k 4 + kJ(k) and'k e R. (By virtue of the fact that 3'(0) = 0 the coefficient A0 is constant 
and is equated to zero.) 

The structure of the linear dispersion relation is of fundamental importance for the KS equation, a~s 
well as for other weakly nonlinear systems. As can be seen from (3.3), for the KS equations, all Fourier modes 
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damp in the linear stage if n > v. Thus, the number of linearly unstable modes is finite, and the KS equation 
itself is shown [12, 13] to be equivalent to a finite dynamic system of ordinary differential equations. 

For relatively small values of the parameter u, the number of linearly unstable Fourier harmonics is 
small, and the limiting regimes of the KS equation are ordered oscillatory or steady states. The latter are 
called j-modal steady states and can be written (with accuracy to a phase shift) as [12] 

g j ( x  ) = cos(j::) + eal j  cos(2jx) + e2a21 cos(3jx) + . . . ,  e = O(10-1), aij = O(1). (3.4) 

For 1 < v 2 < 3.25, the attractor of Eq. (3.2) is the unimodal (j = 1) steady state (3.4). The limiting 
regimes for 3.25 < v 2 < 4.35 are periodic orbits, and for 4.2 < v 2 < 5.63 these are regular pulsation states. 
For 5.63 < v 2 < 10.75, the attractor is the bimodal state (3.4) (j  = 2). For 10.75 < v 2 < 13.5, oscillatory 
and/or chaotic regimes occur, and for 13.5 < v 2 < 17 the trimodal state (3.4) (j = 3) occurs [12, 14]. 

There is a qualitative correlation between the experimentally observable wave flows at small Reynolds 
numbers and representatives of calculated stationary periodic solutions that can be similar to nearly sinusoidal 
waves and wave formations with a higher content of Fourier components [10,11]. 

With increase in the value of v, the number of unstable modes increases and regions of irregular 
behavior occur. For a rather high value of v, the chaotic character of the dynamics increases sharply [13]. 

We turn to Eq. (3.1). For k # 0, the even function J*(k) - kJ(k)  > 0 increases monotonically, and 
there are positive constants C1 and C2 such that Clk 2 < J*(k) < C2k 2. By virtue of the properties of the 
function g*(k), the structures of the dispersion relations of Eqs. (3.1) and (3.2) are similar: only a finite 
number of longwave modes in the range 0 < n </co C a certain k0 of the KS equation k02 = v 2) can be linearly 
unstable; in the region of rather high wave numbers (n > k0), the influence of dissipation turns out to be 
dominant, increasing rapidly by a power law. At the same time, for a given value of p, with increase in the 
parameter A, the number of linearly unstable Fourier modes increases in comparison with the corresponding 
case J - 0 (k02 > v 2 for # = v). Figure 2 shows plots of the function 7(k) for # = 1, B = 1, and cr = 5 for 
A = 0, 2, and 4 (curves 1-3). 

By virtue of the specific properties of the dispersion relation of Eq. (3.1) one might expect that, for 
fixed g = g0 (B = B0 and a = a0), an increase in the value of A (in a certain range) leads to approximately the 
same qualitative results as an increase in the parameter y, beginning with the value equal to g0, for Eq. (3.2). 
The numerical calculations performed [the periodic solutions of Eq. (3.1) were investigated by the Galerkin 

method, and the initial data were specified in the form E #2(sin(jx) + cos(jx))] confirm this assumption. 
j= l  

Thus, for # = 1, B = 1, and a = 5, the attractors of Eq. (3.1) are unimodal steady states for 
0 < A < 3.5 (1 < k02 < 3.26) [as the value of A increases from 0 to 3.5, the content of Fourier-harmonics 
in the wave structure grows - -  the values of ail (i > 1) in (3.4) increase], regular traveling waves for A = 4 
(k 2 ~ 3.63), ordered pulsation states for A = 5 (k 2 ~ 4.39), and bimodal pulsation states for A = S 
(k02 ~ 6.78). For #2 = 7, B = 1, and a = 5, bimodal steady states form for A = 0 (k 2 = 7), and trimodal 
states form for A = 12 (k02 ,~ 16.(i4). It is useful to compare the values of k 2 in calculated examples with the 
above-stated boundaries of the range of the parameter v 2 for attractors of various types of Eqs. (3.1) and 

(3.2). 
The existence of limiting regimes of the type of j-modal states and regular traveling waves in the 
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vicinity of k02 = 4 can be substantiated analytically by the same method as for the KS equation {15]. 
Regimes that were ordered for A = 0 become chaotic for rather large values of A. 
Thus, the analysis performed in the present paper shows that, within the framework of the adopted 

approximations, the presence of a rather strong electric field is a factor that increases the degree of irregularity 
of flow of a viscous dielectric liquid film. 

At the same time, increasing the potential difference in the system considered for fixed parameters Re 
and We and spatial period of perturbations L appears to produce the same changes in the dynamics as an 
increase in the liquid flow rate in ordinary film flow provided that the KS model is adequate. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 
950100340 a). 
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